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We study the problem of the boundary conditions in the numerical simulation of closed and open
quantum systems, described by a Schrédinger equation. On one hand, we show that a closed quantum
system is defined by local boundary conditions. On the other hand, we argue that, because of the uncer-
tainty principle, no local boundary condition can be defined for open quantum systems. For this reason
plane waves or wave packet trains cannot be simulated on a finite numerical lattice with the usual pro-
cedures. We suggest a method that avoids these difficulties by using only a small numerical lattice and
maintains the correspondence with the physical picture, in which the incident and scattered waves may

be infinitely extended.

PACS number(s): 02.70.Bf, 03.80.+r, 03.65.Nk, 85.30.Mn

I. INTRODUCTION

Numerical study of the Schrodinger equation, through
the solution of a finite-difference equation, is a valuable
tool for simulating the dynamics of a quantum system [1].
It is particularly useful for the study of transient phenom-
ena when time-dependent or nonlinear effects, as in the
Hartree-Fock approximation, have to be taken into ac-
count [2].

Moreover, numerical simulations greatly help visuali-
zation of quantum mechanics [3] and allow a detailed
study of interesting quantum phenomena which would be
very difficult to approach otherwise, such as the ‘“double
hump effect” [4], the loss of coherence in nonquadratic
potentials [5], and chaotic behavior in nonlinear tunnel-
ing [6]. However, in any numerical simulation one has to
specify the boundary conditions, which depend on the
particular kind of system under consideration.

In Sec. IIT we begin with the study of closed quantum
systems and show that they can be defined by simple local
conditions. By ‘“local” we mean that they only involve
one point of the lattice.

For open quantum systems, the correct boundary con-
ditions can easily be found in the study of wave-packet
scattering [1-4]. In this case the wave function is appre-
ciably different from zero only over a limited region of
space, and the situation is equivalent to one of a closed
system.

However, it is not always possible to use wave packets.
For instance, they are not always good substitutes for
plane waves. On one hand, a plane wave of wave vector
k can be approximated by a wave packet with average
wave vector k if its width Ax is much larger than the
wavelength A=27/k of the plane wave, that is, if the
condition Ax >>A=2x/k holds. On the other hand, the
dimensions of the numerical grid are limited by the speed
and the storage of the computer. If the value of k is too
small, the dimensions of the numerical grid, which grow
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as 1/k, are prohibitive.

There is unfortunately no way in which, by using some
kind of local boundary conditions, a plane wave may be
made to enter the system. There is no technical reason
for this; it is simply a consequence of the wave nature of
the system. The uncertainty principle is directly in-
volved. For example, if we could define a hypothetical
‘“plane wave injected at a certain point x =X,” or through
a certain interval Al around X, the product of the position
and momentum uncertainties of the incident particles
would be exactly zero.

However, as shown in Sec. IV, with a simple
modification of the finite-difference equation one can in-
ject a wave of arbitrary shape at a precise point of the lat-
tice. The corresponding physical picture, however, is
that in which the wave arrives from an infinite distance.
This method is suitable for the simulation of plane waves,
wave packets trains, or very large wave packets.

As a check on and illustration of the method, some nu-
merical results are presented in Sec. V. They have been
obtained from the numerical solution of the Schrodinger
equation (on a two-dimensional t-x lattice) with the
Crank-Nicolson implicit difference method [7], as ex-
plained in detail in the appendix.

II. STATEMENT OF THE PROBLEM

We will study a model system, described by a one-
dimensional Schrédinger equation [8],
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where V(x,1), the external potential, is a general function
of the space variable x and of the time variable z. For
convenience we introduce an arbitrary unit of energy ¢,
and corresponding space and time units x,, and ¢, defined
as x, =#/V'2me, and t,="%/¢,, respectively. Then Eq.
(1) reduces to
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Ife, =me4/ﬁ2, then atomic units are obtained.

In order to integrate Eq. (2) by numerically solving a
finite-difference equation, one has first to define a two-
dimensional z-x lattice [7]. However, for the sake of clar-
ity, only the x variable will be discretized, while the time
variable ¢ will be left continuous. This simplification is
possible because none of the following considerations de-
pends on the way the time variable is discretized.

We thus introduce a lattice made of N +1 points with
coordinates x;=x,+jAx, where j=0,...,N and Ax is
the step of integration. Approximating the second
derivative with a second difference, from (2) we obtain

) 1
E¢j=_ﬁ(¢j+l+¢j—l_2¢j)+ Vid;

j=1,...,N—1,

where ¥; (V) represents the wave function (the poten-
tial) calculated at time 7 and at x =x;.

However, the system of equations (3) for
j=1,...,N—1, still cannot be solved until the values
¥o(t) and ¢ (2) have been given. They must be specified
through the boundary conditions, in a way that depends
on the nature of the physical system to be studied (e.g., a
closed or an open one). This will be done in Sec. III for
the case of closed quantum systems and in Sec. IV for the
case of open quantum systems.

III. CLOSED QUANTUM SYSTEMS

A quantum system, described by a wave function
(x,t), can be considered closed if a potential V(x,t) is
present, such that the conservation law,

2 [Paxlpxnl=0, @

holds at any time t¢. The coordinates x =a and x =b
represent two points at a finite distance from each other.

Equation (4) holds if the potential at x =a and x =b is
large enough to prevent the wave function from escaping.
In this case we can assume [9] that

Yla,t)=¢(b,1)=0, (5)

for any time ¢. Then the quantum current J(x,t), given
by
ll)t_"/i _,'b_w (6)

21m ax

is zero at x =a and x =, because it is proportional to
the local value of the wave function. Since no flow is
present at the boundaries, from the continuity equation,
d|¥|2/3t+dJ /3x =0, Eq. (4) follows.

The boundary conditions for a closed quantum system
are naturally suggested by Eq. (5). They turn out to be
local and are easily implemented in numerical calcula-
tions if we choose the two extreme points of the lattice as
xo=a and xy =b,
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$o=0, (7a)
¥n=0. (7b)

In the case of a harmonic oscillator, for example, x, and
xy can be chosen as two points where the potential is
very large (much larger than the average energy of the
wave function).

An interesting example is given by an external poten-
tial which is zero everywhere, that is, ¥ (x,¢)=0. In this
case, what system do conditions (7) represent? Since they
are equivalent to the assumption that a very large poten-
tial is present at x =x; and xy, then V increases sharply
at x =x, and xp. This is equivalent to a particle moving
between perfectly reflecting walls. For this problem the
exact solution is known, both with one and two reflecting
walls, if the initial shape of the wave function is Gauss-
ian. This allows a direct comparison between numerical
and analytical results in order to verify the validity of
conditions (7a) and (7b).

It is to be noted that conditions (7a) and (7b) imply the
conservation of the total probability [dx|¢(x,1)|% Its
finite-difference counterpart is Ax 3 ;[4; |2. It we take its
time derivative, by making use of (3) and (7) and assum-
ing that the potential V is real, we obtain

'ﬁ aY;
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IV. OPEN QUANTUM SYSTEMS

We commence with the simpler problem of producing
a wave Py(x,t) at a certain point x =x; (s for source)
traveling toward the right, e.g., a plane wave
D (x,t)= A exp(ikx —ik’t) with k >0. For the moment
we neglect any possible interactions [that is, we assume
V(x,t)=0] which would produce reflected waves. To
solve this problem the following steps are sufficient:

(i) Consider the points x; with j > s and neglect the rest
of the lattice.

(ii) Put ¢, (1) =Dy(x,,1).

(iii) Add a negative imaginary potential near the right
border to absorb the wave, so that at x =x, one has
¢N( t)=0.

(iv) Solve the system of Eq. (3), for j =s +1,...,N —1,
with the boundary conditions given by (ii) and (iii) (note
that they are local).

As examples of initial conditions, we choose
PY(x;0)=Py(x;,0)g(x;) (j>s), where ®, is the plane
wave. The functions g (x) describes the shape of the ini-
tial wave function for x > x;.

If we take g (x)=1, a plane wave is observed to be con-
tinuously generated at x =x, and absorbed near the right
border. If g(x) varies smoothly from g =1to g =0 as x
increases, a wave front is observed moving toward the
right. Figure 1(a) shows plots of the probability density
|(x,1)|*> versus x different instants of time. They have
been obtained from a numerical simulation in which a
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(b)

FIG. 1.

Propagation of the
= A exp(ikx —ik?t), with A=1 and k=2.4, injected at
x,=—15. (a) P(x,t)=|¥(x,t)|> vs x at t =0, 2.5, 5, o (by “0”

plane wave ®g(x,1?)

we mean a large time t=20). The initial configuration is
¥(x,0)=0 for x <x, and ¥(x,0)=P((x,0)g(x) for x > x,, where
g(x) is given by (9). The dashed line represents the absolute
value (in arbitrary units) of the imaginary potential
iVi(x)=—ic(x —x;)*@(x —x;), where @ is the Heaviside func-
tion, x; =20, and ¢=0.1, plotted only at ¢ =0 for clarity. (b)
Quantum current calculated numerically from Eq. (6) at x =10.

plane wave ®y(x,t)= A exp(ikx —ik?t), with 4 =1 and
k=2.4, is produced at x,=-—15. The initial
configuration at ¢ =0 is assumed to be of the form
P(x,0)=®Py(x,0)g(x), where g(x) corresponds to a
smooth wave front and is given by

1 for x; <x <x,

glx)= exp[ —(x —x,)?/I}] for x>x, , ©

where x, = —10, Ig =3. The wave front is observed mov-
ing toward the right with some small oscillations and
with a velocity given by v=2k (in the units €,,x,,t,).
Figure 1(b) shows the quantum current J (z), given by (6),

calculated numerically at a point x >x, versus time ¢.

For large values of ¢, J(t)->J0=2k|A12, the incident
current.

The oscillations can be unstable if the absorbing poten-
tial is too far from the point of injection or if g (x) is not
smooth enough. An example of unstable initial condi-
tions is given by ¥(x,0)=0, which can be obtained with
g(x)=0. Even if it looks smooth () =0 everywhere), it is
physically equivalent to the highly discontinuous initial
conditions ¥(x,0)=®(x,0)0(x —x,), where @ is the
Heaviside function. Actually the plane wave is also
present in the region x <x_, even if in this part of the lat-
tice it is hidden.

After a transient, a steady state is reached, in which
the plane wave is continuously produced at x =x; and
absorbed near the right hand border by the imaginary po-
tential V;(x)=—ic(x —x;)’@(x —x;), where ¢ =0.1 and
x;=20. A smooth imaginary potential produces a gradu-
al absorption of the wave and avoids oscillations, which
could propagate back through the whole lattice. More-
over, in this way there is a large saving of calculations be-
cause one does not have to follow the evolution of the
wave.

We now consider the more general situation in which
scattering of the incident wave ®y(x,?) takes place. We
assume that a general potential V(x,t) is present for
x >x, and an initial configuration ¥(x,0) has been as-
signed. We expect a reflected wave WR(x,t) and a
transmitted wave W'(x,t) to appear, whose shapes are
not known in advance. As far as the transmitted wave is
concerned, no restriction on V is required for its
definition. Its study can be comfortably carried out in
the region between the potential, where it is generated,
and the right hand border, where it is absorbed by the
imaginary potential.

On the other hand, the definition of the reflected wave
WR rests on the assumption that ¥V (x,?) becomes constant
for x — — oo (if the incident wave comes from the left), so
that the total wave function there can be written as a su-
perposition WT=WX+ @, This is why it has been as-
sumed that ¥ —O0 in the left hand region of the lattice
(namely that ¥ =0 for x <x,).

The reflected wave W* will propagate from the poten-
tial region toward the left, superposed on the incident
wave ®,. After it has reached the point x =x, the lat-
tice points x i with j <s, have to be taken into account.
However, this must be done in such a way that the ap-
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parent discontinuity of the wave function at x =x,, due
to the production of ®,, does not propagate to the left as
if it were a physical discontinuity.

If one considers Eq. (3) for fixed j, one notices that it
only contains values of ¢ as three different points of the
lattice [10] (at. the points j +1,j,j —1). Then if in Eq.
(3), written at the point j =s, the value of @ is subtract-
ed from 9, ., everything goes as if “the point x =x; only
sees the reflected wave W®” and by applying (3) at all
points x s with j <s, the only reflected wave evolves.

In the same manner, if in Eq. (3), written at the point
Jj=s +1, the value of ®, is added to y;_,, everything
goes as if “the point x =x, ,; sees the total wave function
YTot=yR+ @ .» Thus it is WT that evolves in the rest of
the lattice by just applying Eq. (3) at all the points j > s.

In terms of formulas, the production of the incident
wave at x =x, and the evolution of the incident and scat-
tered waves are carried out through the following steps.

(i) Apply (3) to all points x; with 1<j=<s —1. Here ¢
only represents WX,

(ii) At j =s subtract @, from ¢, ., (because ¥, =R put
¥, +1=YI%,). Then (3) becomes

3, (2)

]

1
Y =_A_x?{['/’s+1(’)—'po(xs+1»t)]

+, () —=2¢, ()} + V() (2) .
(10)
(iii) At j=s+1 add ®, to ¥;_; (because 3, ., =¥]%,
but ¢, =¥R),
Y 4a(1)
T Ax?

[¢s+2+[¢s(t)+¢0(xs’t)]

2%, (D} T V1O 4 (0)
(11)

(iv) Apply (3) to the rest of the points x;, with j =5 +2;
here =T,

(v) Put 9(¢)=0 and ¢, =0 at the left and right hand
boundaries, where two suitable imaginary potentials ab-
sorb the reflected and transmitted waves, respectively.

The finite-difference system, defined by (i), (ii), (iii), and
(iv), with the boundary conditions given by (v), can now
be solved by standard methods. This procedure is valid
not only when ®(x,?) is a plane wave, but for any other
incident wave (e.g., superposition of plane waves, trains
of wave packets, or just a single wave packet whose width
is very large). It is also applicable to nonlinear potential,
for instance to self-consistent Schrddinger equations,
where V(x,t,[v¥]) is a functional of the wave function .
The only condition is that ¥ =0 (or constant) for x <x;.

The calculation of the reflected wave, through the sub-
traction of the incident wave from the total wave func-
tion, was first carried out by Mains and Haddad [11] in a
numerical study of resonant-tunneling diodes. With the
additional condition that ¥ (x,t)=const for x <x,, it is
possible to study reflected and transmitted waves for a
wide category of quantum mechanical systems, using the
method illustrated in this section.

T T T T T T T T
I

sl

N
T T
|

Aoy

-30 -20 =10 0 10

J(t) i

FIG. 2. Same wave of Fig. 1, scattering off the square poten-
tial barrier V' (x)=V,®(x —a)®(x —b), where V=5, a=—1,
b=+1. (a) |[¢(x,2)|? at t =0, 2.5, 5, ». For the sake of clarity,
the real potential ¥ (x) (continuous line) and the absolute value
of the imaginary potential ¥;(x) (dashed line) are plotted only at
t =0. The oscillations between the point of injection and the
barrier are due to the interference between incident and
reflected waves. (b) Reflected (negative) current J®(¢) and
transmitted (positive) current J(¢), evaluated at x = —20 and
10, respectively.
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V. NUMERICAL SIMULATIONS

Finally, we present some numerical examples. The nu-
merical results have been obtained using the Crank-
Nicolson implicit method [7], as described in detail in the
Appendix.

We begin with the study of a plane wave
®(x,t)= A explikx —ik?’t) with A =1, k=2.4, pro-
duced at x; = —15 and scattered by a static square bar-
rier V(x)=V ®(x —a)®(b —x), with V=5, a=—1,
b=+1. Figure 2(a) shows |#(x,?)|? versus x at different
times. One can see how the incident plane wave scatters
off the barrier, producing a transmitted and a reflected
wave. The reflected wave interferes with the incident one
between the point of injection and the potential region,
giving rise to fast oscillations of |¢|2. They are localized
in the region between x =x; and the barrier, where both
the incident and the reflected wave are present. The
wavelength of the oscillations is A=1(27/k)=m/k (the
factor 1 is due to the fact that the second power of || is
plotted). For x <x; no interference is observed, because
®, has been subtracted from ¥ at x =x, and only WX
has been left. The reflected wave is then visualized in the
region x <x; and its detailed study is carried out just as
for the transmitted wave in the region behind the barrier.
For this reason the absence of interference turns out to be
very useful, even if nonphysical—in a one-dimensional
system there is always interference between incident and
reflected waves.

Figure 2(b) shows the time evolution of the transmitted
and reflected currents J () and J2(z). It can easily be
shown that for t— o they approach just the values
2k| A|*T(k) and 2k| A |*R (k) corresponding to the sta-
tionary Schrodinger problem [12], where R (k) and T (k)
are the reflection and the transmission coefficients. This
means that the system relaxes toward its stationary state.

Figure 3 shows a comparison between the values of the
transmission and reflection coefficients obtained by nu-

-

FIG. 3. Reflection (dashed line) and transmission (continuous
line) coefficients T and R of the square potential barrier of Fig.
2(a), calculated from Egs. (12) and (13), are compared with the
values obtained by numerical simulations. B, numerical values
of R. A, numerical values of T. The integration steps used in
the numerical simulation are Az =0.01 and Ax =0.05.
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FIG. 4. Same plane wave of Figs. 1 and 2, scattering
off the time-dependent potential Vix,t)
=Vo[l+acos(ot)]®(x —a)®(b —x), where V,=5, a=1,
v=w/2r=1,a=—1, b=+1. (@) |¥(x,1)|* at t =0, 5, 10, 15.
Note the oscillations in space. (b) Reflected and transmitted
currents, calculated at x =—20 and x =10, respectively. No-
tice the oscillations in time.
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merical simulation and those calculated from the theoret-
ical expressions for the case of a square potential barrier
[12], given by

T(k)=1—R (k)= L ,
1+1 k?—— [sin(k'L)]?
(12)
for k2> V, and by
T(k)=1—R (k)= L ,
1+% fk_ [sinh(k'L)]?

(13)
for k2<V,. Here k'=1/|V,—k?| and L=b—a is the
barrier length.

As a last example, Figs. 4(a) and 4(b) show the results
of a numerical simulation of a time-dependent problem:
the scattering of a plane wave by a square barrier whose
height oscillates in time. Even for systems of this kind,
the present method allows us to study directly the time
evolution of the wave function with no approximation
other than that due to the numerical algorithm used.

VI. CONCLUSION

It has been shown that numerical simulations of closed
quantum systems can be carried out by using local
boundary conditions for the Schrédinger equation. On
the other hand, however, the concept of boundary condi-
tion is meaningless for open quantum systems because of
the uncertainty principle. In this case the problem could
be avoided by using a lattice which is large enough to
contain the shape of the whole function. But if one has
to study very large wave packets or plane waves, this is
not a realistic solution.

We have shown, however, that it is possible to provide
a numerical description of an open quantum system,
where incident as well as reflected and transmitted waves
are present. The method to be used produces the in-
cident wave at a certain point of the lattice. The
transmitted wave is studied behind the interaction region,
while the reflected wave is isolated by extracting the in-
cident wave from the total function at the point of injec-
tion. All this is obtained with some simple modifications
of the finite-difference equation used. The study of the
evolution of the transmitted and reflected waves very far
from the scattering region is avoided by imaginary poten-
tials which absorb the scattered waves. The correspond-
ing physical picture is, however, meaningful because it
describes waves which may be extended infinitely.

This approach to the numerical study of scattering
phenomena could be useful for studying problems where
time dependence is an essential ingredient (e.g., transient
phenomena and scattering by time-dependent potentials)
without either resorting to perturbation theory, partial
wave analysis, or using wave packets.
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APPENDIX

We have used the Crank-Nicolson implicit finite-
difference method [7] to discretize Eq. (3) on a two-
dimensional lattice (#;,x;) with t, =kAt(k =0,...,M)
and x;=x,+jAx (j=0,...,N). At and Ax are the in-
tegration steps for the x and the ¢ variables, respectively.

We refer to the values ¢(#;,x;) [V(x;,#;)] as ¢V}‘ (V}‘).
Then the finite-difference equation corresponding to the
Crank-Nicolson implicit method can be obtained through
the following simple time discretization procedure: the
derivative 0y; /0t is replaced with the finite difference
(¢k+1 ¢J)/At and the values of ¢; (¥;) are replaced
w1th their arithmetic averages, between times ¢, and

v MOEHUR) [LVF 4 VR),

iAt
2Ax 2

¢j~<+1‘_‘§[l§ [(¢k+l+ ?;0—11__21,’5_(+1)

+(h gk =290

k+1 k k+1 k
Vit Vil Y
2 2 )

+iAt

(A1)

The integration steps used in the present paper are
At ~0.01 and Ax =~0.05.

We point out that if we want the quantity
[ dx|(x,1)|* to be conserved, then the time average of
the term V;9; in (3) must be done in such away that the
coefficients of ¥%*! and of ¥¥ in the last term of (A1) are
eclual In this case, by making use of (A1) and letting

c=yk =0, it is possible to show that

N-1
2 AP tP="3 142 (A2)
1
For other kinds of time averaging, such as
Vi, — (Vg T4 pkyk), the time evolution opera-

tor associated with the finite-difference equation is not
unitary and the quantity [ dx|y(x,?)|? is not conserved.

If ¥V does not depend on 3, Eq. (A1) can be reordered
in the form of a tridiagonal system,

apf H+ Bt T gkl =r,, j=1,...

,N—1.
(A3)

The coefficients a, Bj, and r; do not depend on the values
of ¥ at time k +1 and are given by
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a=—iAt/2Ax?, (A4)

By =1+iAt /Ax*—iAt (VT + V) /2, (A5)

ri=a*yk i FBiYktatyk_ (A6)
where

Bi=1—iAt/Ax>+iAt(VET'+ V) /2 . (A7)

Note that if V is complex, the Ej are not the complex
conjugate of the B;. The modifications of the finite-

difference equations represented by (10) and (11) when the
time variables is continuous can be taken into account
here simply by modifying the terms r; and r, , |,

ro—ri=r.+a(®H+ok, ), (A8)
Fe 1T 41 =0 Fat (@ TIH0K) (A9)

System (A3) can be solved using the Gauss elimination
method [7] to obtain the 3} * s as functions of the y¥’s,

once the values of ¥% ! and ¢% ! are known.
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